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1. Introduction

In case of Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric
spaces SUy,12/S(U2Uy,) and SUs 1, /S(U2Up,), which are said to be complex two-plane Grassmannians and
complex hyperbolic two-plane Grassmannians respectively (see [1,2,15,16]). These are viewed as Hermitian
symmetric spaces and quaternionic Kéhler symmetric spaces equipped with the Kahler structure J and
the quaternionic Kéhler structure J on SUs ,/S(U2Up,). The rank of SU; ,,/S(U2U,,) is 2 and there are
exactly two types of singular tangent vectors X of SUs ,,,/S(UzU,y,) which are characterized by the geometric
properties JX € JX and JX 1 JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones,
we can give the example of complex quadric Q™ = SO,,42/50,,502, which is a complex hypersurface in
complex projective space CP™ (see Berndt and Suh [3], and Smyth [14]). The complex quadric also can be
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regarded as a kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [7]).
Accordingly, the complex quadric admits both a complex conjugation structure A and a Kéhler structure J,
which anti-commutes with each other, that is, AJ = —JA. Then for m>2 the triple (Q™, J, g) is a Hermitian
symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein
[6] and Reckziegel [12]).

In addition to the complex structure J there is another distinguished geometric structure on ", namely
a parallel rank two vector bundle 2 which contains an S'-bundle of real structures, that is, complex conju-
gations A on the tangent spaces of Q™. The set is denoted by 2j,; = {Axz|AeS'CC}, [z]eQ™, and it is the
set of all complex conjugations defined on Q™. Then 4.} becomes a parallel rank 2-subbundle of End T'Q™.
This geometric structure determines a maximal 2(-invariant subbundle Q of the tangent bundle TM of a
real hypersurface M in Q™. Here the notion of parallel vector bundle 2 means that (VxA)Y = ¢(X)JAY
for any vector fields X and Y on Q™, where V and ¢ denote a connection and a certain 1-form defined on
T, Q™, [2]€Q™ respectively (see Smyth [14]).

Recall that a nonzero tangent vector W € T,Q™ is called singular if it is tangent to more than one
maximal flat in @™. There are two types of singular tangent vectors for the complex quadric Q™:

1. If there exists a conjugation A € A such that W € V(A), then W is singular. Such a singular tangent
vector is called 2A-principal, where V(A) denotes the (+1)-eigenspace and JV(A) the (—1)-eigenspace
of the conjugation A.

2. If there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A) such that W/||W|| = (X +
JY)/v/2, then W is singular. Such a singular tangent vector is called 2f-isotropic.

On the other hand, Okumura [13] proved that the Reeb flow on a real hypersurface in CP™ =
SUp+1/S(U1Uy,) is isometric if and only if M is an open part of a tube around a totally geodesic CPF c
CP™ for some k € {0,...,m — 1}. For the complex 2-plane Grassmannian Go(C™*?) = SU,,+2/S(UsU,,) a
classification was obtained by Berndt and Suh [14]. The Reeb flow on a real hypersurface in Go(C™*?) is iso-
metric if and only if M is an open part of a tube around a totally geodesic G (C™*+1) € Go(C™*2). Moreover,
in [16] we have proved that the Reeb flow on a real hypersurface in G3(C™2) = SUs ,,,/S(UsU,,) is isometric
if and only if M is an open part of a tube around a totally geodesic SUs y,—1/S(UaUs—1) C SUz.m /S (U2Up,).
For the complex quadric @™ = SO,,42/50250,,, Berndt and Suh [1] have obtained the following result:

Theorem A. Let M be a real hypersurface of the complex quadric Q™, m > 3. Then the Reeb flow on M is
isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic
CP* c Q% .

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold (M, g) satisfy a well
known differential equation. This equation naturally inspires the so-called Jacobi operator. That is, if
R denotes the curvature operator of M, and X is tangent vector field to M, then the Jacobi operator
RxeEnd(T, M) with respect to X at x€M, defined by (RxY)(x) = (R(Y, X)X)(x) for any X€T, M, be-
comes a self adjoint endomorphism of the tangent bundle TM of M. Thus, each tangent vector field X to
M provides a Jacobi operator Rx with respect to X. In particular, for the Reeb vector field £, the Jacobi
operator R¢ is said to be a structure Jacobi operator.

Recently Ki, Pérez, Santos and Suh [8] have investigated the Reeb parallel structure Jacobi operator in
the complex space form M,,(c), ¢£0 and have used it to study some principal curvatures for a tube over a
totally geodesic submanifold. In particular, Pérez, Jeong and Suh [11] have investigated real hypersurfaces
M in Go(C™*2) with parallel structure Jacobi operator, that is, Vy R¢ = 0 for any tangent vector field X
on M. Jeong, Suh and Woo [5] and Pérez and Santos [9] have generalized such a notion to the recurrent
structure Jacobi operator, that is, (VxRe)Y = B(X)R,Y for a certain 1-form § and any vector fields X,Y
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on M in G5(C™*?). Moreover, Pérez, Santos and Suh [10] have further investigated the property of the Lie
&-parallel structure Jacobi operator in complex projective space CP™, that is, L¢Re = 0.

When we consider a hypersurface M in the complex quadric @™, the unit normal vector field N of M in
Q™ can be divided into two cases: N is 2-isotropic or A-principal (see [3,4,17,18]). In the first case where
M has an 2-isotropic unit normal N, we have asserted in [3] that M is locally congruent to a tube over a
totally geodesic CP* in Q?*. In the second case when N is A-principal we have proved that M is locally
congruent to a tube over a totally geodesic and totally real submanifold S™ in Q™ (see [4]).

In this paper we consider the case when the structure Jacobi operator Re of M in Q™ is parallel, that
is, VxR¢ = 0 for any tangent vector field X on M, and first we prove the following

Main Theorem 1. Let M be a Hopf real hypersurface in Q™, m>3, with parallel structure Jacobi operator.
Then the unit normal vector field N is singular, that is, N is -isotropic or A-principal.

On the other hand, in [20] we have considered the notion of parallel normal Jacobi operator Ry for a real
hypersurface M in Q™, that is, Vx Ry = 0 for any tangent vector fields X and a unit normal vector field
N on M, and have proved a non-existence property, where the normal Jacobi operator Ry is defined by
RyX = R(X ,N)N from the curvature tensor R of the complex quadric Q™. Motivated by this result, and
using Theorem A and Main Theorem 1, we give another non-existence property for Hopf real hypersurfaces
in Q™ with parallel structure Jacobi operator as follows:

Main Theorem 2. There do not exist any Hopf real hypersurfaces in Q™, m>3 with parallel structure Jacobi
operator.

2. The complex quadric

For more background to this section we refer to [3,4,6,7,12,17,18]. The complex quadric Q™ is the complex
hypersurface in CP™*! which is defined by the equation 22 + --- + zfn+2 = 0, where z1,..., 2,42 are
homogeneous coordinates on CP™*!. We equip Q™ with the Riemannian metric which is induced from the
Fubini Study metric on CP™*+! with constant holomorphic sectional curvature 4. The Kéhler structure on
CP™*! induces canonically a Kéhler structure (.J, g) on the complex quadric. For each z € Q™ we identify
T.CP™*! with the orthogonal complement C™*2 S Cz of Cz in C™*2 (see Kobayashi and Nomizu [7]). The
tangent space T,Q™ can then be identified canonically with the orthogonal complement C™*2 & (Cz @ Cp)
of Cz @ Cp in C™*2, where p € v,Q™ is a normal vector of Q™ in CP™*! at the point z.

The complex projective space CP™*! is a Hermitian symmetric space of the special unitary group
SU,n 42, namely CP™ ! = SU,, . 2/S(Up,11U1). We denote by o = [0,...,0,1] € CP™*! the fixed point of
the action of the stabilizer S(U,,+1U;). The special orthogonal group SO, 1o C SU,, 12 acts on CP™! with
cohomogeneity one. The orbit containing o is a totally geodesic real projective space RP™+! ¢ CP™*!,
The second singular orbit of this action is the complex quadric Q™ = SO, +2/50,,S02. This homogeneous
space model leads to the geometric interpretation of the complex quadric @™ as the Grassmann manifold
G;‘ (R™+2) of oriented 2-planes in R™*2. Tt also gives a model of Q™ as a Hermitian symmetric space of
rank 2. The complex quadric Q! is isometric to a sphere S? with constant curvature, and Q? is isometric to
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m > 3
from now on.

For a unit normal vector p of Q™ at a point z € Q™ we denote by A = A, the shape operator of Q™ in
CP™*! with respect to p. The shape operator is an involution on the tangent space 7,Q™ and

Tsz = V(A,’)) @ JV(Ap)a
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where V(A,) is the +1-eigenspace and JV (4,) is the (—1)-eigenspace of A,. Geometrically this means
that the shape operator A, defines a real structure on the complex vector space 1T.Q™, or equivalently,
is a complex conjugation on T,Q™. Since the real codimension of Q™ in CP™*! is 2, this induces an
S1-subbundle A of the endomorphism bundle End(T'Q™) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q™ can be viewed as the
complexification of the m-dimensional sphere S™. Through each point z € @™ there exists a one-parameter
family of real forms of @™ which are isometric to the sphere S™. These real forms are congruent to each
other under action of the center SO of the isotropy subgroup of SO,,;+2 at z. The isometric reflection of
Q™ in such a real form S™ is an isometry, and the differential at z of such a reflection is a conjugation on
T.Q™. In this way the family 2 of conjugations on T,Q™ corresponds to the family of real forms S™ of Q™
containing z, and the subspaces V(A) C T,Q™ correspond to the tangent spaces T,S5™ of the real forms
S™ of @™.

The Gauss equation for Q™ C CP™*! implies that the Riemannian curvature tensor R of Q™ can be
described in terms of the complex structure J and the complex conjugations A € 2:

R(X,Y)Z = g(Y,2)X — g(X, 2)Y + g(JY, Z)JX — g(JX,Z)JY —2¢(JX,Y)JZ
+g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

Then from the equation of Gauss the curvature tensor R of M in complex quadric Q™ is defined so that

R(X,Y)Z =g(Y,2)X — g(X,2)Y + g(¢Y, Z)pX — g(¢X, Z2)9Y —29(¢X,Y)dpZ
+ g(AY, 2)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY
+9(SY, 2)SX — g(SX, Z)SY,

where S denotes the shape operator of M in Q™.
For every unit tangent vector W € T,Q" there exist a conjugation A € 2 and orthonormal vectors
X,Y € V(A) such that

W = cos(t)X +sin(t)JY

for some t € [0, 7/4]. The singular tangent vectors correspond to the valuest =0and t = 7/4. If 0 < t < w/4
then the unique maximal flat containing W is RX @RJY . Later we will need the eigenvalues and eigenspaces
of the Jacobi operator Ry = R(-, W)W for a singular unit tangent vector W.

1. If W is an 2-principal singular unit tangent vector with respect to A € 2, then the eigenvalues of Ry,
are 0 and 2 and the corresponding eigenspaces are RW @ J(V(A) © RW) and (V(A) © RW) @ RJW,
respectively.

2. If W is an U-isotropic singular unit tangent vector with respect to A € 2 and X, Y € V(A), then the
eigenvalues of Ry are 0, 1 and 4 and the corresponding eigenspaces are RW @& C(JX +Y), T.Q™ ©
(CX & CY) and RJW, respectively.

3. Some general equations

Let M be a real hypersurface in Q™ and denote by (¢, £, 7, g) the induced almost contact metric structure.
Note that £ = —JN, where N is a (local) unit normal vector field of M. The tangent bundle TM of M
splits orthogonally into TM = C @& RE, where C = ker(n) is the maximal complex subbundle of TM. The
structure tensor field ¢ restricted to C coincides with the complex structure J restricted to C, and ¢& = 0.
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At each point z € M we define the maximal -invariant subspace of T, M, ze M as follows:
Q. ={XeT,M|AX € T.M for all A€ 2,}.

Lemma 3.1. (/17]) For each z € M we have:

(i) If N, is ™A-principal, then Q, = C,.
(ii) IF N, is not A-principal, there exist a conjugation A € A and orthonormal vectors X,Y € V(A) such
that N, = cos(t)X + sin(t)JY for some t € (0,7/4]. Then we have Q, =C, © C(JX +7Y).

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Q™ satisfies

5S¢ =af

with the Reeb function o = ¢g(S¢,€) on M. When we consider a transform JX of the Kaehler structure J
on Q™ for any vector field X on M in Q™, we may put

JX =X +n(X)N
for a unit normal N to M. We now consider the Codazzi equation
9(Vx )Y — (VyS)X,Z) =n(X)g(¢Y, Z) —n(Y)g(¢X, Z) — 21(Z)g(¢X,Y)

+9(X,AN)g(AY, Z) — g(Y,AN)g(AX, Z)
+9(X, A§)g(JAY, Z) — g(Y, A&)g(JAX, Z).

Putting Z = £ we get
g(VxS)Y — (VyS9)X,§) = —29(¢X,Y)
— 9(X, AQ)g(JY, AE) + g(Y, AQ)g(J X, AS).
On the other hand, we have
g(VxS)Y — (Vy5)X,§)

= 9((Vx9)§,Y) = 9((Vy9)E, X)
= (Xa)n(Y) = (Ya)n(X) + ag((S¢ + ¢5) X, Y) — 29(S4SX, Y).

Comparing the previous two equations and putting X = ¢ yields
Ya = (§a)n(Y) —29(&, AN)g(Y, AL) 4 29(Y, AN)g(§, AS).
Reinserting this into the previous equation yields

9((Vx9)Y — (Vy9)X,¢)

= —29(§, AN)g(X, AHn(Y) + 29(X, AN)g(§, An(Y')
+29(& AN)g(Y, AGn(X) — 29(Y, AN)g(&, An(X)
+ag((¢S + S¢)X,Y) — 29(SpSX,Y).
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Altogether this implies

0=29(SpSX,Y) —ag((¢S+ SH)X,Y) —29(¢X,Y)
+ g(X, AN)g(Y, AS) — g(Y, AN)g(X, AE)
— 9(X, AQg(JY, AL) + g(Y, A )g(J X, AE)
+29(§ AN)g(X, AGn(Y) — 29(X, AN)g(&, AG)n(Y)
—29(& AN)g(Y, AOn(X) + 29(Y, AN)g(&, A)n(X).

At each point z € M we can choose A € 2, such that
N = cos(t)Zy + sin(t)J Z

for some orthonormal vectors Z;, Z> € V(A) and 0 < ¢t < T (see Proposition 3 in [12]). Note that ¢ is a

function on M. First of all, since £ = —JN, we have

= cos(t)Zy + sin(t)J Za,
AN = cos(t)Z; — sin(t)J Zs,
= sin(t)Zy — cos(t)J 2y,
A§ = sin(t)Zy + cos(t)J Z;.

This implies g(§, AN) = 0 and hence

0=29(SpSX,Y) —ag((¢S + SH)X,Y) —2g(¢X,Y)
+ 9(X, AN)g(Y, A) — g(Y, AN)g(X, AE)
— 9(X, A g(JY, AL) + g(Y, A&)g(J X, AE)
—29(X, AN)g(&, AGn(Y) + 29(Y, AN)g(§, A§)n(X).

The curvature tensor R(X,Y)Z for a real hypersurface M in Q™ is given by

R(X,Y)Z =g(Y,Z)X — g(X, Z)Y + g(¢Y, Z)pX
—9(¢X, Z)pY —29(¢X,Y)0Z
+ g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX
— g(JAX, Z)JAY + g(SY, Z)SX — g(SX, Z)SY.

From this, putting Y = Z = ¢ and using g(A¢, N) = 0, a structure Jacobi operator is defined by

Re(X) = R(X, )¢
=X —n(X)§ + g(AL OAX — g(AX, §) AL

Hereafter, we will apply the following lemmas which will be useful to prove our results in the introduction.

Lemma 3.2. ([17]) Let M be a Hopf hypersurface in Q™ such that the normal vector field N is A-principal

everywhere. Then « is constant. Moreover, if X € C is a principal curvature vector of M with principal

al+2
2 —a”

curvature A, then 2\ # a and ¢X is a principal curvature vector of M with principal curvature
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Lemma 3.3. ([17]) Let M be a Hopf hypersurface in Q™, m > 3, such that the normal vector field N is
A-isotropic everywhere. Then « is constant.

4. A key lemma

The curvature tensor R(X,Y)Z for a Hopf real hypersurface M in @™ induced from the curvature tensor
of Q™ is given in section 3. Now the structure Jacobi operator R, from section 3 can be rewritten as follows:

Re(X) = R(X, )€
=X —n(X)¢+ BAX — g(AX,§) AL — g(AX,N)AN (4.1)
+aSX —g(SX,£)S¢E,

where we have put o = g(S¢,€) and 5 = g(AE, §), because we assume that M is Hopf. The Reeb vector field
¢ = —JN and the anti-commuting property AJ = —JA gives that the function 8 becomes § = —g(AN, N).
When this function § = g(AE, &) identically vanishes, we say that a real hypersurface M in Q™ is -isotropic
as in section 1.

Here we use the assumption of being parallel structure Jacobi operator, that is, Vy Rg = 0. Then (4.1)
gives that

0=VyRe(X) = Vy(Re(X)) — Re(Vy X)
=—(Vyn)(X)§ = n(X)VyE+ (YB)AX
+ B{Vy(AX) — AVy X} — g(X, Vy (A))A¢
— 9(X, A Vy (A8) — g(X, Vy (AN))AN — g(X, AN)Vy (AN)
+ (Ya)SX + a(VyS9)X —Y(a?)n(X)¢
—a?(Vyn)(X)€ — a®n(X)Vy¢
=—g(oSY, X)§ —n(X)pSY + (Y B)AX (4.2)
+ B{q(Y)JAX 4+ g(SX,Y)AN}
— g(X,q(Y)JAE + ApSY + an(Y)AN)A¢
— g(X, A& {q(Y)JAE + ApSY + an(Y)AN}
—g(X,q(Y)JAN — ASY)AN — g(X,AN){q(Y)JAN — ASY'}
+(Ya)SX + a(VyS)X — Y(a?)n(X)¢
— & (Vyn)(X)€ — a®n(X)Vy¢,
where we have used the following formulae
Vy (Ag) = (Vy A)E + A(Vy€)

=q(Y)JAE + ApSY + g(SY,€) AN,
Vy(AN) = (Vy A)N 4+ AVN = ¢(Y)JAN — ASY,

and

Vy(AX) = (VyA)X + AVy X = q(Y)JAX + A(Vy X +o(X,Y)).
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From this, by taking the inner product of (4.2) with the unit normal N, we have

0=(Yp)g(AX,N) + p{q(Y)g(JAX,N) + g(SX,Y)g(AN,N)}
—9(X, A§)q(Y)g(JAE, N)
—9(X, A§){g(ApSY, N) + an(Y)g(AN,N)} (4.3)
—g(X,q(Y)JAN — ASY)g(AN, N)
—q(Y)g(JAN,N)g(X,AN) + g(X, AN)g(ASY, N)
Then, first, by putting X = £ and using g(A&, N) = 0, we have
—Bg(ApSY,N) + Bg(§, JAN)q(Y) — Bg(§, ASY) = 0. (4.4)

On the other hand, we know that

9(€, ASY) = —g(JN, ASY) = g(N, JASY) = —g(N, AJSY)

Substituting this one into (4.4), we have
Bg(&, JAN)q(Y) + n(SY)g(N,AN) = 0.
From this, together with g(AN, N) = —f, we have
B*Hq(Y) —an(Y)} =0.

Then 8 =0 or ¢(Y) = an(Y) for any vector field Y on M in Q™.
When the function g = g(A§,§) = 0, we have t = 7, because 3 = —cos2t in section 3, then the unit
normal vector field N becomes

1
N=—(Z1+JZ
\/5( 1 2)

for Z,,Z5€V(A) as in section 3, that is, the unit normal N is -isotropic.
Next we consider the case that 8#£0. Then ¢(§) = .
Now let us put Y = £ in (4.3) and use the assumption of M being Hopf, that is, S¢ = a&. Then we have

0 =(£B)g(AX, N) + B{q(§)9(JAX, N) + an(X)g(AN, N)}

—q(§)g(X, A)g(JAE, N)

—ag(X, A§)g(AN, N) — q(§)9(X, JAN)g(AN, N) + ag(X, A§)g(AN, N)

—q(§)g(JAN, N)g(X, AN).
From this, by putting ¢(§) = «, and using g(AN,N) = —3, g(JA¢,N) = —g(AN,N), and g(JAN,N) =
g(AN, &) = 0, we have

0=(£8)g(AX, N) + afg(JAX,N) — af?n(X)
+ afg(X,JAN) — afBg(X, AE) (4.6)
= (£8)g(AX, N) + afg(AX, €) — af*n(X),
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where we have used that g(JAX,N) = g(A¢, X) and g(X,JAN) = g(X, A¢). Here we know that {5 = 0,
because we can calculate the following

§B8 =E9(AL,€)
= g((VeA)e + AV, €) + g(AE, Vi)
=g(q(§)JA¢E, §) (4.7)
=—q(§)g(AE,N)
:0)

where we have used the equation of Gauss V¢& = Ve€+g(SE E)N = aN. Then (4.6) gives 0 = aB8g(AE, X)—
af?g(&, X) for any tangent vector field X on M. From this, together with 0 = aBg(A¢, N) — aB?g(€, N)
for the unit normal vector field N, we have

afAE = aB3€. (4.8)

By applying the complex conjugation A to both sides of (4.8) and using the involution property A? = I
and (4.8) again, we get

afé = afA’¢ = af?AE = af’¢.

From this, together with using the property of a3#0 for the Reeb function a#0, we have 32 = 1. This
means that § = —cos2t = 1 or § = —cos2t = —1 if the Reeb function « is non-vanishing, because the
function 8 = g(A&,§) = — cos 2t as in section 3. Then we have respectively ¢t = 7 or ¢ = 0. But in section 3,
we know that ogtgg. So we have only ¢ = 0, and the unit normal vector field N becomes 2A-principal. Then
including the case of vanishing Reeb curvature «, we can prove the following

Lemma 4.1. Let M be a Hopf real hypersurface in complex quadric Q™, m>3, with parallel structure Jacobi
operator. Then the unit normal vector field N is 2A-principal or A-isotropic.

Proof. When the Reeb function « is non-vanishing, we have shown that the unit normal N is 2-isotropic or
QA-principal according to the function 8 = 0 or 8 = —1 respectively. When the Reeb function « identically
vanishes, let us show that N is %d-isotropic or 2A-principal. In order to do this, from the condition of Hopf,
we can differentiate S¢ = € and use the equation of Codazzi in section 3, then we get the formula

Ya= (§a)n(Y) —29(¢, AN)g(Y, AS) +2g(Y, AN)g(§, AS).

From the assumption of & = 0 combined with the fact g(¢(, AN) = 0 proved in section 3, we deduce
g(Y,AN)g(§, AE) = 0 for any YET. M, z€M. This gives that the vector AN is normal, that is, AN =
g(AN, N)N or g(A¢, &) = 0, which implies that the unit normal N is 2-principal or 2-isotropic, respectively.
This completes the proof of our Lemma. 0O

By virtue of Lemma 4.1, we can consider two classes of real hypersurfaces in complex quadric Q™ with
parallel structure Jacobi operator with 2(-principal unit normal vector field N or otherwise, with 2A-isotropic
unit normal vector field N. We will consider each cases in sections 5 and 6 respectively.
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5. Parallel structure Jacobi operator with 2(-principal normal

In this section we consider a real hypersurface M in a complex quadric with 2-principal unit normal
vector field. Then the unit normal vector field N satisfies AN = N for a complex conjugation A€2l.
Then the structure Jacobi operator R is given by

Re(X) = X —2n(X)€ — AX + g(S€,6)SX — g(SX, €)S¢. (5.1)
Since we assume that M is being Hopf, (5.1) becomes
Re(X) =X —2n(X)€ — AX 4+ aSX — o®n(X)¢E. (5.2)

By the assumption of the structure Jacobi operator R¢ being parallel, the derivative of R¢ along any
tangent vector field Y on M is given by

0=(VyRe)(X) = Vy(Re(X)) — Re(Vy X)
==2{(Vyn)(X)§ + n(X)Vy &} = (Vy )X + (Ya)SX (5.3)
+a(VyS)X — (Yo )n(X)¢ — o*(Vyn)(X)§ — o?n(X)Vy¢.
We can write
AY = BY 4+ p(Y)N,

where BY denotes the tangential component of AY and p(Y) = g(AY,N) = g(Y,AN) = g(Y,N) = 0. So
we have AY = BY for any vector field Y on M in Q™. Then it follows

(VyA)X =Vy(AX) — AVy X
=Vy(AX) —o(Y,AX) — AVy X
=(VyA)X + A{VyX + (Y, X)}
—o(Y, AX) — AVy X

(5.4)

qY)JAX + Ao (Y, X) — o(Y, AX)

q(Y)JAX + g(SX,Y)AN — g(SY, AX)N,

where we have used the Gauss and Weingarten formulae. From this, together with (5.3) and using the notion
of A-principal, we have

0=(VyRe)(X)
=2+ ) {(Vyn)(X)E +n(X)Vy e}
—{q(Y)JAX + g(SX,Y)N — g(SY, AX)N}
+(Ya)SX + a(VyS)X — (Ya?)n(X)E.

(5.5)

From this, taking the inner product of (5.5) with the unit normal vector field N, we have

qY)g(JAX,N) +g(SX,Y) — g(SY,AX) = 0.
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Since A¢ = —¢, the formula g(JAX, N) = g(AX, &) = —n(X) holds. Then we have
—q(Y)E+ SY — ASY =0.
By putting Y = £ and using the assumption of M being Hopf, we have

q(§) =2a. (5.6)

Putting X = ¢ into (5.5), and using (5.6) and the constancy of the Reeb function a = ¢(S¢,&) (see
Lemma 3.2 in section 3), we have

0=—(24+a?)Vy¢
— [2an(Y)JAE + 2an(Y)N} + a(Vy )¢ (5.7)
— _24SY — aS$SY,

where we have used

(VyS)E =Vy (S8 — SVy¢
=aVy& — SpSY (5-8)
— agSY — SHSY.

If we put SY = \Y, YeC = [¢]*, where Y is orthogonal to the Reeb vector field &, then (5.7) gives
2\PY = —aASeY. (5.9)

Here we can show that the principal curvature X identically vanishes on M. In fact, if we assume that there
is a principal curvature vector field Y€C such that SY = Y, A£0, then (5.9) yields

2
S¢Y = — 2 4Y. (5.10)
a
But by Lemma 3.2, we know that S¢Y = uoY, p = g‘/{‘—ji for SY = AY. From this, together with (5.10),

it follows that a? + 4 = 0, which gives a contradiction. Then the expression of the shape operator S of M
in Q™ satisfies

a 0 0 0 0 0
00 0 0 0
: 0

S=10 0 0 0 0
00 0 0 0 0

00 0 0 0 - 0

This gives SY = an(Y')¢ for any tangent vector field Y on M, where 7 is an 1-form corresponding to the
Reeb vector field &, that is, M is totally n-umbilical, in which case the shape operator S commutes with
the structure tensor ¢. Then by Theorem A in the introduction, M is locally congruent to a tube of radius
r, 0 <r < %, over a totally geodesic complex submanifold CP* in Q**, m = 2k. That is, the Reeb flow on
M is isometric.
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On the other hand, we want to introduce the following proposition (see page 1350050-14 in Berndt and
Suh [3]).

Proposition 5.1. Let M be a real hypersurface in Q™, m>3, with isometric Reeb flow. Then the unit normal
vector field N is A-isotropic everywhere.

By Proposition 5.1, we know that the unit normal vector field N of M is 2-isotropic, not 2-principal.
This rules out the existence of a real hypersurface in Q™, m>3, with parallel structure Jacobi field and
2-principal unit normal vector field N. Accordingly, such an 2(-principal case for parallel structure Jacobi
operator on the tube never happen. So we give a proof of our main theorem with 2-principal unit normal N.

6. Parallel structure Jacobi operator with 2(-isotropic normal

In this section we assume that the unit normal vector field IV is -isotropic. Then the normal vector field
N can be written as
1
V2

for 71, Z,€V(A), where V(A) denotes a +1-eigenspace of the complex conjugation A€2l. Then it follows
that

N (Zy + J Zs)

b

AN =
V2

1
(Zl —JZQ), AJN = — (JZl +Z2), and JN = _Q(JZ1 —ZQ).

1
V2
Then it gives that

g(&, A8) = g(JN,AJN) =0,9({,AN) =0 and g(AN,N) = 0.

By virtue of these formulas for 2A-isotropic unit normal, the structure Jacobi operator can be defined so
that

Re(X) = R(X,§)¢

=X —n(X)§ — g(AX,§ AL — g(JAX, ) JAL (6.1)

On the other hand, we know that JA( = —JAJN = AJ?N = —JN, and g(JAX,§) = —g(AX, JE) =
—g(AX, N). Now the structure Jacobi operator R¢ can be rearranged as follows:

Re(X) =X —n(X)§ — g(AX, §)AS — g(X, AN)AN

6.2
+aSX — a?n(X)E. (62)

Differentiating (6.2) we obtain

Vy Re(X) =Vy (Re(X)) — Re(Vy X)
=—(Vyn)(X)§ —n(X)Vy§ — g(X, Vy (A)) AL
—9(X, A Vy (AE) — g(X, Vy (AN))AN — g(X, AN)Vy (AN) (6.3)
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+ (Ya)SX 4+ a(VyS)X — (Ya?)n(X)¢

— a*(Vyn)(X)¢ — a®n(X)Vy&.

Here let us use the equation of Gauss and Weingarten formula as follows:

Vy (Ag) =Vy (AE) — o (Y, A¢)
=(VyA)E + AVyE — o(Y, AE)
=q(Y)JAE + A{pSY +n(SY )N} — g(SY, AE)N,

and

Vy(AN) =Vy(AN) —a(Y, AN)
=(VyA)N + AVyN — (Y, AN)
=q(Y)JAN — ASY — g(SY, AN)N.

Substituting these formulas into (6.3) and using the assumption of parallel structure Jacobi operator, we
have

0 =VyR:(X)
=—g(¢SY, X)¢ — n(X)pSY

—{a(YV)g(AE, X) + g(ApSY, X) + g(SY,€)g(AN, X) } AL
= 9(X, AO{q(Y)JAL + ApSY + g(SY,§)AN
—g(SY, AN} — {q(Y)g(X, AN) — g(X, ASY)}AN
— g(X, AN){q(Y)JAN — ASY — g(SY, AN)N}
+(Y)SX +a(VyS)X — (Ya?)n(X)¢
— a%g(¢SY, X)¢ — a’y(X)oSY.

(6.4)

From this, taking inner product with the Reeb vector field &, we have

0 =—g(pSY, X) — g(X, A§)g(ApSY, ) + g(X, AN)g(ASY, &)
+ (Ya)an(X) + ag((Vy S) X, ) (6.5)
— (Ya®)n(X) — a?g(¢SY, X).

Here by the assumption of M being Hopf, we can use the following
(Vy8)§ = Vy(S§) — S(Vy§) = (Ya)§ + apSY — S¢SY.
Then it follows that
ag(Vy9)X, &) = gla(Ya)é + a?¢SY — aS¢SY, X). (6.6)

Taking inner product of (6.4) with the unit normal N, it follows that
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0 :—g(X, A§)g(A¢SY7 N) +g(X, Af)g(SY, Ag) (6 7)
+ (X, AN)g(ASY, N) + g(X, AN)g(SY, AN). '

From this, putting X = AN and using that N is -isotropic, we have SAN = 0. This also gives SpA¢ = 0.
On the other hand, one of the terms ¢g(SY, A¢) in (6.4) becomes

9(SY, Ag) = —g(SY, AJN) = g(SY, JAN) = g(SY,pAN + n(AN)N) = —g(ApSY, N).
Substituting this term into (6.7) gives S AN = 0. Summing up these formulas, we can write
SA¢E =0, SAN =0, SpA = 0,and SPpAN = 0. (6.8)

Taking the inner product of (6.4) with the Reeb vector field £, and using (6.6), (6.8) and the constancy of
the Reeb function « in Lemma 3.3, we have

#SY = —aS4SY. (6.9)

In the case for N is 2l-isotropic, in Lemma 3.3 we have shown that the Reeb function « is constant. So, we
divide into the two cases that either a = 0 or a#0. For the first case with the Reeb function « vanishing,
(6.9) gives $SY = 0, which implies SY = an(Y)¢ = 0 for any vector field Y on M, that is, M is totally
geodesic. Then by putting X = £ into the equation of Codazzi in section 3 for 2I-isotropic unit normal
vector field N and using the notion of totally geodesic, we have

0=g(¢Y,Z) — g(Y,AN)g(AE, Z) — g(Y, A§)g(J AL, Z).

Then for any vector fields Y, Z€Q, where Y, Z are orthogonal to the Reeb vector fields A¢ and AN, we have
g9(¢Y, Z) = 0, which gives a contradiction.

Next we consider the case for the Reeb function a#0.

On the distribution Q let us introduce a formula mentioned in section 3 as follows:

256SY — (¢S + SP)Y = 2¢Y (6.10)

for any tangent vector field Y on M in Q™ (see also [3], pages 1350050-11). So if SY = AY in (6.10), then
(2A — ) SPY = (a) + 2)¢Y, which gives

al+2
2\ — «

SeY = PY. (6.11)

Here we note that 2\ — 0. In fact, if 2\ — a = 0, then o\ + 2 = 0, which implies a? + 4 = 0. This
gives us a contradiction. By (6.9) and (6.10), we know that

2+a?
oY

dSY — aSeY = 2¢Y.
From this, putting SY = AY and using (6.11), we know that

2X + ) + 2«
2

oY,

Sy = — oY

6.12
_ al+ 2 ( )

T2 —a
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Then by a straightforward calculation, we get the following equation
M2(e? 4+ 2)\ +2a} = 0.

This means A = 0 or A = — 5. When A = 0, by (6.12), S¢Y = —%QSY. Then % = 22
a? +4 = 0. This is again a contradiction. So we can assume that the other principal curvature is —

which gives

_a
242"

Now let us denote the principal curvature — by the function 5. Accordingly, the shape operator S can

_a
aZ+2
be expressed as

@ 0 0 0 0 0 07
000 0 0 0 0
000 0 0 0 0
000 B 0 0 0
S=|: : : :
000 0 B0 0
000 0 0 B 0
0 000 - 00 - B

Let us consider the principal curvature 8 such that SY = Y in the formula (6.9). Then (6.9) gives that
BoY = —afBS¢Y . From this, together with the expression for .S, we have

SoY =poY
1
- _ﬁqsy = —Z¢Y.
af «
Then —1 = af = —a;"—iz,
hypersurfaces M in Q™ with 2l-isotropic unit normal vector field and the non-vanishing Reeb function «

which gives us a contradiction. Accordingly, we also conclude that any real
do not admit a parallel structure Jacobi operator.

Remark 6.1. In [19] we have classified real hypersurfaces M in complex quadric Q™ with parallel Ricci
tensor, according to whether the unit normal N is 2-principal or 2-isotropic. When N is -principal, we
proved a non-existence property for Hopf hypersurfaces in Q™. For a Hopf real hypersurface M in Q™ with
2A-isotropic we have given a complete classification that it has three distinct constant principal curvatures.
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