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1. Introduction

In case of Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric 
spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said to be complex two-plane Grassmannians and 
complex hyperbolic two-plane Grassmannians respectively (see [1,2,15,16]). These are viewed as Hermitian 
symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and 
the quaternionic Kähler structure J on SU2,m/S(U2Um). The rank of SU2,m/S(U2Um) is 2 and there are 
exactly two types of singular tangent vectors X of SU2,m/S(U2Um) which are characterized by the geometric 
properties JX ∈ JX and JX ⊥ JX respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, 
we can give the example of complex quadric Qm = SOm+2/SOmSO2, which is a complex hypersurface in 
complex projective space CPm (see Berndt and Suh [3], and Smyth [14]). The complex quadric also can be 

✩ This work was supported by grant Proj. No. NRF-2015-R1A2A1A-01002459 from National Research Foundation of Korea.
E-mail address: yjsuh@knu.ac.kr.
http://dx.doi.org/10.1016/j.difgeo.2017.01.001
0926-2245/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.difgeo.2017.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:yjsuh@knu.ac.kr
http://dx.doi.org/10.1016/j.difgeo.2017.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.difgeo.2017.01.001&domain=pdf


34 Y.J. Suh / Differential Geometry and its Applications 51 (2017) 33–48
regarded as a kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [7]). 
Accordingly, the complex quadric admits both a complex conjugation structure A and a Kähler structure J , 
which anti-commutes with each other, that is, AJ = −JA. Then for m≥2 the triple (Qm, J, g) is a Hermitian 
symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein 
[6] and Reckziegel [12]).

In addition to the complex structure J there is another distinguished geometric structure on Qm, namely 
a parallel rank two vector bundle A which contains an S1-bundle of real structures, that is, complex conju-
gations A on the tangent spaces of Qm. The set is denoted by A[z] = {Aλz̄|λ∈S1⊂C}, [z]∈Qm, and it is the 
set of all complex conjugations defined on Qm. Then A[z] becomes a parallel rank 2-subbundle of End TQm. 
This geometric structure determines a maximal A-invariant subbundle Q of the tangent bundle TM of a 
real hypersurface M in Qm. Here the notion of parallel vector bundle A means that (∇̄XA)Y = q(X)JAY

for any vector fields X and Y on Qm, where ∇̄ and q denote a connection and a certain 1-form defined on 
T[z]Q

m, [z]∈Qm respectively (see Smyth [14]).
Recall that a nonzero tangent vector W ∈ TzQ

m is called singular if it is tangent to more than one 
maximal flat in Qm. There are two types of singular tangent vectors for the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent 
vector is called A-principal, where V (A) denotes the (+1)-eigenspace and JV (A) the (−1)-eigenspace 
of the conjugation A.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/||W || = (X +
JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic.

On the other hand, Okumura [13] proved that the Reeb flow on a real hypersurface in CPm =
SUm+1/S(U1Um) is isometric if and only if M is an open part of a tube around a totally geodesic CP k ⊂
CPm for some k ∈ {0, . . . , m −1}. For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um) a 
classification was obtained by Berndt and Suh [14]. The Reeb flow on a real hypersurface in G2(Cm+2) is iso-
metric if and only if M is an open part of a tube around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2). Moreover, 
in [16] we have proved that the Reeb flow on a real hypersurface in G∗

2(Cm+2) = SU2,m/S(U2Um) is isometric 
if and only if M is an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um). 
For the complex quadric Qm = SOm+2/SO2SOm, Berndt and Suh [1] have obtained the following result:

Theorem A. Let M be a real hypersurface of the complex quadric Qm, m ≥ 3. Then the Reeb flow on M is 
isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic 
CP k ⊂ Q2k.

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold (M, g) satisfy a well 
known differential equation. This equation naturally inspires the so-called Jacobi operator. That is, if 
R denotes the curvature operator of M , and X is tangent vector field to M , then the Jacobi operator 
RX∈End(TxM) with respect to X at x∈M , defined by (RXY )(x) = (R(Y, X)X)(x) for any X∈TxM , be-
comes a self adjoint endomorphism of the tangent bundle TM of M . Thus, each tangent vector field X to 
M provides a Jacobi operator RX with respect to X. In particular, for the Reeb vector field ξ, the Jacobi 
operator Rξ is said to be a structure Jacobi operator.

Recently Ki, Pérez, Santos and Suh [8] have investigated the Reeb parallel structure Jacobi operator in 
the complex space form Mm(c), c�=0 and have used it to study some principal curvatures for a tube over a 
totally geodesic submanifold. In particular, Pérez, Jeong and Suh [11] have investigated real hypersurfaces 
M in G2(Cm+2) with parallel structure Jacobi operator, that is, ∇XRξ = 0 for any tangent vector field X
on M . Jeong, Suh and Woo [5] and Pérez and Santos [9] have generalized such a notion to the recurrent 
structure Jacobi operator, that is, (∇XRξ)Y = β(X)RξY for a certain 1-form β and any vector fields X, Y
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on M in G2(Cm+2). Moreover, Pérez, Santos and Suh [10] have further investigated the property of the Lie 
ξ-parallel structure Jacobi operator in complex projective space CPm, that is, LξRξ = 0.

When we consider a hypersurface M in the complex quadric Qm, the unit normal vector field N of M in 
Qm can be divided into two cases: N is A-isotropic or A-principal (see [3,4,17,18]). In the first case where 
M has an A-isotropic unit normal N , we have asserted in [3] that M is locally congruent to a tube over a 
totally geodesic CP k in Q2k. In the second case when N is A-principal we have proved that M is locally 
congruent to a tube over a totally geodesic and totally real submanifold Sm in Qm (see [4]).

In this paper we consider the case when the structure Jacobi operator Rξ of M in Qm is parallel, that 
is, ∇XRξ = 0 for any tangent vector field X on M , and first we prove the following

Main Theorem 1. Let M be a Hopf real hypersurface in Qm, m≥3, with parallel structure Jacobi operator. 
Then the unit normal vector field N is singular, that is, N is A-isotropic or A-principal.

On the other hand, in [20] we have considered the notion of parallel normal Jacobi operator R̄N for a real 
hypersurface M in Qm, that is, ∇XR̄N = 0 for any tangent vector fields X and a unit normal vector field 
N on M , and have proved a non-existence property, where the normal Jacobi operator R̄N is defined by 
R̄NX = R̄(X, N)N from the curvature tensor R̄ of the complex quadric Qm. Motivated by this result, and 
using Theorem A and Main Theorem 1, we give another non-existence property for Hopf real hypersurfaces 
in Qm with parallel structure Jacobi operator as follows:

Main Theorem 2. There do not exist any Hopf real hypersurfaces in Qm, m≥3 with parallel structure Jacobi 
operator.

2. The complex quadric

For more background to this section we refer to [3,4,6,7,12,17,18]. The complex quadric Qm is the complex 
hypersurface in CPm+1 which is defined by the equation z2

1 + · · · + z2
m+2 = 0, where z1, . . . , zm+2 are 

homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric which is induced from the 
Fubini Study metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler structure on 
CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric. For each z ∈ Qm we identify 
TzCP

m+1 with the orthogonal complement Cm+2	Cz of Cz in Cm+2 (see Kobayashi and Nomizu [7]). The 
tangent space TzQ

m can then be identified canonically with the orthogonal complement Cm+2 	 (Cz⊕Cρ)
of Cz ⊕ Cρ in Cm+2, where ρ ∈ νzQ

m is a normal vector of Qm in CPm+1 at the point z.
The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group 

SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of 
the action of the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with 
cohomogeneity one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. 
The second singular orbit of this action is the complex quadric Qm = SOm+2/SOmSO2. This homogeneous 
space model leads to the geometric interpretation of the complex quadric Qm as the Grassmann manifold 
G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric space of 
rank 2. The complex quadric Q1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric to 
the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume m ≥ 3
from now on.

For a unit normal vector ρ of Qm at a point z ∈ Qm we denote by A = Aρ the shape operator of Qm in 
CPm+1 with respect to ρ. The shape operator is an involution on the tangent space TzQ

m and

TzQ
m = V (Aρ) ⊕ JV (Aρ),
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where V (Aρ) is the +1-eigenspace and JV (Aρ) is the (−1)-eigenspace of Aρ. Geometrically this means 
that the shape operator Aρ defines a real structure on the complex vector space TzQ

m, or equivalently, 
is a complex conjugation on TzQ

m. Since the real codimension of Qm in CPm+1 is 2, this induces an 
S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the 
complexification of the m-dimensional sphere Sm. Through each point z ∈ Qm there exists a one-parameter 
family of real forms of Qm which are isometric to the sphere Sm. These real forms are congruent to each 
other under action of the center SO2 of the isotropy subgroup of SOm+2 at z. The isometric reflection of 
Qm in such a real form Sm is an isometry, and the differential at z of such a reflection is a conjugation on 
TzQ

m. In this way the family A of conjugations on TzQ
m corresponds to the family of real forms Sm of Qm

containing z, and the subspaces V (A) ⊂ TzQ
m correspond to the tangent spaces TzS

m of the real forms 
Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be 
described in terms of the complex structure J and the complex conjugations A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Then from the equation of Gauss the curvature tensor R of M in complex quadric Qm is defined so that

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY

+ g(SY,Z)SX − g(SX,Z)SY,

where S denotes the shape operator of M in Qm.
For every unit tangent vector W ∈ TzQ

m there exist a conjugation A ∈ A and orthonormal vectors 
X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. If 0 < t < π/4
then the unique maximal flat containing W is RX⊕RJY . Later we will need the eigenvalues and eigenspaces 
of the Jacobi operator RW = R(·, W )W for a singular unit tangent vector W .

1. If W is an A-principal singular unit tangent vector with respect to A ∈ A, then the eigenvalues of RW

are 0 and 2 and the corresponding eigenspaces are RW ⊕ J(V (A) 	 RW ) and (V (A) 	 RW ) ⊕ RJW , 
respectively.

2. If W is an A-isotropic singular unit tangent vector with respect to A ∈ A and X, Y ∈ V (A), then the 
eigenvalues of RW are 0, 1 and 4 and the corresponding eigenspaces are RW ⊕ C(JX + Y ), TzQ

m 	
(CX ⊕ CY ) and RJW , respectively.

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure. 
Note that ξ = −JN , where N is a (local) unit normal vector field of M . The tangent bundle TM of M
splits orthogonally into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex subbundle of TM . The 
structure tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ = 0.
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At each point z ∈ M we define the maximal A-invariant subspace of TzM , z∈M as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Lemma 3.1. ([17]) For each z ∈ M we have:

(i) If Nz is A-principal, then Qz = Cz.
(ii) IF Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such 

that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz 	 C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Qm satisfies

Sξ = αξ

with the Reeb function α = g(Sξ, ξ) on M . When we consider a transform JX of the Kaehler structure J
on Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . We now consider the Codazzi equation

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).

Putting Z = ξ we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y ) − 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+ 2g(ξ, AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ, Aξ)η(X)

+ αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ).
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Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ, AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Proposition 3 in [12]). Note that t is a 

function on M . First of all, since ξ = −JN , we have

N = cos(t)Z1 + sin(t)JZ2,

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X).

The curvature tensor R(X, Y )Z for a real hypersurface M in Qm is given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX

− g(JAX,Z)JAY + g(SY,Z)SX − g(SX,Z)SY.

From this, putting Y = Z = ξ and using g(Aξ, N) = 0, a structure Jacobi operator is defined by

Rξ(X) = R(X, ξ)ξ

= X − η(X)ξ + g(Aξ, ξ)AX − g(AX, ξ)Aξ

− g(JAX, ξ)JAξ + g(Sξ, ξ)SX − g(SX, ξ)Sξ.

Hereafter, we will apply the following lemmas which will be useful to prove our results in the introduction.

Lemma 3.2. ([17]) Let M be a Hopf hypersurface in Qm such that the normal vector field N is A-principal 
everywhere. Then α is constant. Moreover, if X ∈ C is a principal curvature vector of M with principal 
curvature λ, then 2λ �= α and φX is a principal curvature vector of M with principal curvature αλ+2 .
2λ−α
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Lemma 3.3. ([17]) Let M be a Hopf hypersurface in Qm, m ≥ 3, such that the normal vector field N is 
A-isotropic everywhere. Then α is constant.

4. A key lemma

The curvature tensor R(X, Y )Z for a Hopf real hypersurface M in Qm induced from the curvature tensor 
of Qm is given in section 3. Now the structure Jacobi operator Rξ from section 3 can be rewritten as follows:

Rξ(X) =R(X, ξ)ξ

=X − η(X)ξ + βAX − g(AX, ξ)Aξ − g(AX,N)AN

+ αSX − g(SX, ξ)Sξ,

(4.1)

where we have put α = g(Sξ, ξ) and β = g(Aξ, ξ), because we assume that M is Hopf. The Reeb vector field 
ξ = −JN and the anti-commuting property AJ = −JA gives that the function β becomes β = −g(AN, N). 
When this function β = g(Aξ, ξ) identically vanishes, we say that a real hypersurface M in Qm is A-isotropic 
as in section 1.

Here we use the assumption of being parallel structure Jacobi operator, that is, ∇YRξ = 0. Then (4.1)
gives that

0 =∇Y Rξ(X) = ∇Y (Rξ(X)) −Rξ(∇Y X)

=−(∇Y η)(X)ξ − η(X)∇Y ξ + (Y β)AX

+ β{∇̄Y (AX) −A∇Y X} − g(X, ∇̄Y (Aξ))Aξ

− g(X,Aξ)∇̄Y (Aξ) − g(X, ∇̄Y (AN))AN − g(X,AN)∇̄Y (AN)

+ (Y α)SX + α(∇Y S)X − Y (α2)η(X)ξ

− α2(∇Y η)(X)ξ − α2η(X)∇Y ξ

=−g(φSY,X)ξ − η(X)φSY + (Y β)AX

+ β{q(Y )JAX + g(SX, Y )AN}

− g(X, q(Y )JAξ + AφSY + αη(Y )AN)Aξ

− g(X,Aξ){q(Y )JAξ + AφSY + αη(Y )AN}

− g(X, q(Y )JAN −ASY )AN − g(X,AN){q(Y )JAN −ASY }

+ (Y α)SX + α(∇Y S)X − Y (α2)η(X)ξ

− α2(∇Y η)(X)ξ − α2η(X)∇Y ξ,

(4.2)

where we have used the following formulae

∇̄Y (Aξ) = (∇̄Y A)ξ + A(∇̄Y ξ)

= q(Y )JAξ + AφSY + g(SY, ξ)AN,

∇̄Y (AN) = (∇̄Y A)N + A∇̄N = q(Y )JAN −ASY,

and

∇̄Y (AX) = (∇̄Y A)X + A∇̄Y X = q(Y )JAX + A(∇Y X + σ(X,Y )).
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From this, by taking the inner product of (4.2) with the unit normal N , we have

0 = (Y β)g(AX,N) + β{q(Y )g(JAX,N) + g(SX, Y )g(AN,N)}

− g(X,Aξ)q(Y )g(JAξ,N)

− g(X,Aξ){g(AφSY,N) + αη(Y )g(AN,N)}

− g(X, q(Y )JAN −ASY )g(AN,N)

− q(Y )g(JAN,N)g(X,AN) + g(X,AN)g(ASY,N)

(4.3)

Then, first, by putting X = ξ and using g(Aξ, N) = 0, we have

−βg(AφSY,N) + βg(ξ, JAN)q(Y ) − βg(ξ, ASY ) = 0. (4.4)

On the other hand, we know that

g(ξ, ASY ) =−g(JN,ASY ) = g(N, JASY ) = −g(N,AJSY )

=−g(N,AφSY ) − η(SY )g(N,AN).

Substituting this one into (4.4), we have

βg(ξ, JAN)q(Y ) + βη(SY )g(N,AN) = 0.

From this, together with g(AN, N) = −β, we have

β2{q(Y ) − αη(Y )} = 0.

Then β = 0 or q(Y ) = αη(Y ) for any vector field Y on M in Qm.
When the function β = g(Aξ, ξ) = 0, we have t = π

4 , because β = − cos 2t in section 3, then the unit 
normal vector field N becomes

N = 1√
2
(Z1 + JZ2)

for Z1, Z2∈V (A) as in section 3, that is, the unit normal N is A-isotropic.
Next we consider the case that β �=0. Then q(ξ) = α.
Now let us put Y = ξ in (4.3) and use the assumption of M being Hopf, that is, Sξ = αξ. Then we have

0 = (ξβ)g(AX,N) + β{q(ξ)g(JAX,N) + αη(X)g(AN,N)}

− q(ξ)g(X,Aξ)g(JAξ,N)

− αg(X,Aξ)g(AN,N) − q(ξ)g(X, JAN)g(AN,N) + αg(X,Aξ)g(AN,N)

− q(ξ)g(JAN,N)g(X,AN).

(4.5)

From this, by putting q(ξ) = α, and using g(AN, N) = −β, g(JAξ, N) = −g(AN, N), and g(JAN, N) =
g(AN, ξ) = 0, we have

0 = (ξβ)g(AX,N) + αβg(JAX,N) − αβ2η(X)

+ αβg(X, JAN) − αβg(X,Aξ)

= (ξβ)g(AX,N) + αβg(AX, ξ) − αβ2η(X),

(4.6)



Y.J. Suh / Differential Geometry and its Applications 51 (2017) 33–48 41
where we have used that g(JAX, N) = g(Aξ, X) and g(X, JAN) = g(X, Aξ). Here we know that ξβ = 0, 
because we can calculate the following

ξβ = ξg(Aξ, ξ)

= g((∇̄ξA)ξ + A∇̄ξξ, ξ) + g(Aξ, ∇̄ξξ)

= g(q(ξ)JAξ, ξ)

=−q(ξ)g(Aξ,N)

= 0,

(4.7)

where we have used the equation of Gauss ∇̄ξξ = ∇ξξ+g(Sξ, ξ)N = αN . Then (4.6) gives 0 = αβg(Aξ, X) −
αβ2g(ξ, X) for any tangent vector field X on M . From this, together with 0 = αβg(Aξ, N) − αβ2g(ξ, N)
for the unit normal vector field N , we have

αβAξ = αβ2ξ. (4.8)

By applying the complex conjugation A to both sides of (4.8) and using the involution property A2 = I

and (4.8) again, we get

αβξ = αβA2ξ = αβ2Aξ = αβ3ξ.

From this, together with using the property of αβ �=0 for the Reeb function α �=0, we have β2 = 1. This 
means that β = − cos 2t = 1 or β = − cos 2t = −1 if the Reeb function α is non-vanishing, because the 
function β = g(Aξ, ξ) = − cos 2t as in section 3. Then we have respectively t = π

2 or t = 0. But in section 3, 
we know that 0≤t≤π

4 . So we have only t = 0, and the unit normal vector field N becomes A-principal. Then 
including the case of vanishing Reeb curvature α, we can prove the following

Lemma 4.1. Let M be a Hopf real hypersurface in complex quadric Qm, m≥3, with parallel structure Jacobi 
operator. Then the unit normal vector field N is A-principal or A-isotropic.

Proof. When the Reeb function α is non-vanishing, we have shown that the unit normal N is A-isotropic or 
A-principal according to the function β = 0 or β = −1 respectively. When the Reeb function α identically 
vanishes, let us show that N is A-isotropic or A-principal. In order to do this, from the condition of Hopf, 
we can differentiate Sξ = αξ and use the equation of Codazzi in section 3, then we get the formula

Y α = (ξα)η(Y ) − 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

From the assumption of α = 0 combined with the fact g(ξ, AN) = 0 proved in section 3, we deduce 
g(Y, AN)g(ξ, Aξ) = 0 for any Y ∈TzM , z∈M . This gives that the vector AN is normal, that is, AN =
g(AN, N)N or g(Aξ, ξ) = 0, which implies that the unit normal N is A-principal or A-isotropic, respectively. 
This completes the proof of our Lemma. �

By virtue of Lemma 4.1, we can consider two classes of real hypersurfaces in complex quadric Qm with 
parallel structure Jacobi operator with A-principal unit normal vector field N or otherwise, with A-isotropic 
unit normal vector field N . We will consider each cases in sections 5 and 6 respectively.
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5. Parallel structure Jacobi operator with A-principal normal

In this section we consider a real hypersurface M in a complex quadric with A-principal unit normal 
vector field. Then the unit normal vector field N satisfies AN = N for a complex conjugation A∈A.

Then the structure Jacobi operator Rξ is given by

Rξ(X) = X − 2η(X)ξ −AX + g(Sξ, ξ)SX − g(SX, ξ)Sξ. (5.1)

Since we assume that M is being Hopf, (5.1) becomes

Rξ(X) = X − 2η(X)ξ −AX + αSX − α2η(X)ξ. (5.2)

By the assumption of the structure Jacobi operator Rξ being parallel, the derivative of Rξ along any 
tangent vector field Y on M is given by

0 = (∇Y Rξ)(X) = ∇Y (Rξ(X)) −Rξ(∇Y X)

=−2{(∇Y η)(X)ξ + η(X)∇Y ξ} − (∇Y A)X + (Y α)SX

+ α(∇Y S)X − (Y α2)η(X)ξ − α2(∇Y η)(X)ξ − α2η(X)∇Y ξ.

(5.3)

We can write

AY = BY + ρ(Y )N,

where BY denotes the tangential component of AY and ρ(Y ) = g(AY, N) = g(Y, AN) = g(Y, N) = 0. So 
we have AY = BY for any vector field Y on M in Qm. Then it follows

(∇Y A)X =∇Y (AX) −A∇Y X

= ∇̄Y (AX) − σ(Y,AX) −A∇Y X

=(∇̄Y A)X + A{∇Y X + σ(Y,X)}

− σ(Y,AX) −A∇Y X

= q(Y )JAX + Aσ(Y,X) − σ(Y,AX)

= q(Y )JAX + g(SX, Y )AN − g(SY,AX)N,

(5.4)

where we have used the Gauss and Weingarten formulae. From this, together with (5.3) and using the notion 
of A-principal, we have

0 = (∇Y Rξ)(X)

=−(2 + α2){(∇Y η)(X)ξ + η(X)∇Y ξ}

− {q(Y )JAX + g(SX, Y )N − g(SY,AX)N}

+ (Y α)SX + α(∇Y S)X − (Y α2)η(X)ξ.

(5.5)

From this, taking the inner product of (5.5) with the unit normal vector field N , we have

q(Y )g(JAX,N) + g(SX, Y ) − g(SY,AX) = 0.
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Since Aξ = −ξ, the formula g(JAX, N) = g(AX, ξ) = −η(X) holds. Then we have

−q(Y )ξ + SY −ASY = 0.

By putting Y = ξ and using the assumption of M being Hopf, we have

q(ξ) = 2α. (5.6)

Putting X = ξ into (5.5), and using (5.6) and the constancy of the Reeb function α = g(Sξ, ξ) (see 
Lemma 3.2 in section 3), we have

0 =−(2 + α2)∇Y ξ

− {2αη(Y )JAξ + 2αη(Y )N} + α(∇Y S)ξ

=−2φSY − αSφSY,

(5.7)

where we have used

(∇Y S)ξ =∇Y (Sξ) − S∇Y ξ

=α∇Y ξ − SφSY

=αφSY − SφSY.

(5.8)

If we put SY = λY , Y ∈C = [ξ]⊥, where Y is orthogonal to the Reeb vector field ξ, then (5.7) gives

2λφY = −αλSφY. (5.9)

Here we can show that the principal curvature λ identically vanishes on M . In fact, if we assume that there 
is a principal curvature vector field Y ∈C such that SY = λY , λ�=0, then (5.9) yields

SφY = − 2
α
φY. (5.10)

But by Lemma 3.2, we know that SφY = μφY , μ = αλ+2
2λ−α for SY = λY . From this, together with (5.10), 

it follows that α2 + 4 = 0, which gives a contradiction. Then the expression of the shape operator S of M
in Qm satisfies

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 0 · · · 0
0 0 0 0 · · · · · · 0
...

...
. . .

...
... · · · 0

0 0 0 0 · · · · · · 0
0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This gives SY = αη(Y )ξ for any tangent vector field Y on M , where η is an 1-form corresponding to the 
Reeb vector field ξ, that is, M is totally η-umbilical, in which case the shape operator S commutes with 
the structure tensor φ. Then by Theorem A in the introduction, M is locally congruent to a tube of radius 
r, 0 < r < π

2 , over a totally geodesic complex submanifold CP k in Q2k, m = 2k. That is, the Reeb flow on 
M is isometric.
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On the other hand, we want to introduce the following proposition (see page 1350050-14 in Berndt and 
Suh [3]).

Proposition 5.1. Let M be a real hypersurface in Qm, m≥3, with isometric Reeb flow. Then the unit normal 
vector field N is A-isotropic everywhere.

By Proposition 5.1, we know that the unit normal vector field N of M is A-isotropic, not A-principal. 
This rules out the existence of a real hypersurface in Qm, m≥3, with parallel structure Jacobi field and 
A-principal unit normal vector field N . Accordingly, such an A-principal case for parallel structure Jacobi 
operator on the tube never happen. So we give a proof of our main theorem with A-principal unit normal N .

6. Parallel structure Jacobi operator with A-isotropic normal

In this section we assume that the unit normal vector field N is A-isotropic. Then the normal vector field 
N can be written as

N = 1√
2
(Z1 + JZ2)

for Z1, Z2∈V (A), where V (A) denotes a +1-eigenspace of the complex conjugation A∈A. Then it follows 
that

AN = 1√
2
(Z1 − JZ2), AJN = − 1√

2
(JZ1 + Z2), and JN = 1√

2
(JZ1 − Z2).

Then it gives that

g(ξ, Aξ) = g(JN,AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

By virtue of these formulas for A-isotropic unit normal, the structure Jacobi operator can be defined so 
that

Rξ(X) =R(X, ξ)ξ

=X − η(X)ξ − g(AX, ξ)Aξ − g(JAX, ξ)JAξ

+ g(Sξ, ξ)SX − g(SX, ξ)Sξ.

(6.1)

On the other hand, we know that JAξ = −JAJN = AJ2N = −JN , and g(JAX, ξ) = −g(AX, Jξ) =
−g(AX, N). Now the structure Jacobi operator Rξ can be rearranged as follows:

Rξ(X) =X − η(X)ξ − g(AX, ξ)Aξ − g(X,AN)AN

+ αSX − α2η(X)ξ.
(6.2)

Differentiating (6.2) we obtain

∇Y Rξ(X) =∇Y (Rξ(X)) −Rξ(∇Y X)

=−(∇Y η)(X)ξ − η(X)∇Y ξ − g(X,∇Y (Aξ))Aξ

− g(X,Aξ)∇Y (Aξ) − g(X,∇Y (AN))AN − g(X,AN)∇Y (AN) (6.3)
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+ (Y α)SX + α(∇Y S)X − (Y α2)η(X)ξ

− α2(∇Y η)(X)ξ − α2η(X)∇Y ξ.

Here let us use the equation of Gauss and Weingarten formula as follows:

∇Y (Aξ) = ∇̄Y (Aξ) − σ(Y,Aξ)

= (∇̄Y A)ξ + A∇̄Y ξ − σ(Y,Aξ)

= q(Y )JAξ + A{φSY + η(SY )N} − g(SY,Aξ)N,

and

∇Y (AN) = ∇̄Y (AN) − σ(Y,AN)

= (∇̄Y A)N + A∇̄Y N − σ(Y,AN)

= q(Y )JAN −ASY − g(SY,AN)N.

Substituting these formulas into (6.3) and using the assumption of parallel structure Jacobi operator, we 
have

0 =∇Y Rξ(X)

=−g(φSY,X)ξ − η(X)φSY

− {q(Y )g(Aξ,X) + g(AφSY,X) + g(SY, ξ)g(AN,X)}Aξ

− g(X,Aξ){q(Y )JAξ + AφSY + g(SY, ξ)AN

− g(SY,Aξ)N} − {q(Y )g(X,AN) − g(X,ASY )}AN

− g(X,AN){q(Y )JAN −ASY − g(SY,AN)N}

+ (Y α)SX + α(∇Y S)X − (Y α2)η(X)ξ

− α2g(φSY,X)ξ − α2η(X)φSY.

(6.4)

From this, taking inner product with the Reeb vector field ξ, we have

0 =−g(φSY,X) − g(X,Aξ)g(AφSY, ξ) + g(X,AN)g(ASY, ξ)

+ (Y α)αη(X) + αg((∇Y S)X, ξ)

− (Y α2)η(X) − α2g(φSY,X).

(6.5)

Here by the assumption of M being Hopf, we can use the following

(∇Y S)ξ = ∇Y (Sξ) − S(∇Y ξ) = (Y α)ξ + αφSY − SφSY.

Then it follows that

αg((∇Y S)X, ξ) = g(α(Y α)ξ + α2φSY − αSφSY,X). (6.6)

Taking inner product of (6.4) with the unit normal N , it follows that
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0 =−g(X,Aξ)g(AφSY,N) + g(X,Aξ)g(SY,Aξ)

+ g(X,AN)g(ASY,N) + g(X,AN)g(SY,AN).
(6.7)

From this, putting X = AN and using that N is A-isotropic, we have SAN = 0. This also gives SφAξ = 0.
On the other hand, one of the terms g(SY, Aξ) in (6.4) becomes

g(SY,Aξ) = −g(SY,AJN) = g(SY, JAN) = g(SY, φAN + η(AN)N) = −g(AφSY,N).

Substituting this term into (6.7) gives SφAN = 0. Summing up these formulas, we can write

SAξ = 0, SAN = 0, SφAξ = 0, and SφAN = 0. (6.8)

Taking the inner product of (6.4) with the Reeb vector field ξ, and using (6.6), (6.8) and the constancy of 
the Reeb function α in Lemma 3.3, we have

φSY = −αSφSY. (6.9)

In the case for N is A-isotropic, in Lemma 3.3 we have shown that the Reeb function α is constant. So, we 
divide into the two cases that either α = 0 or α �=0. For the first case with the Reeb function α vanishing, 
(6.9) gives φSY = 0, which implies SY = αη(Y )ξ = 0 for any vector field Y on M , that is, M is totally 
geodesic. Then by putting X = ξ into the equation of Codazzi in section 3 for A-isotropic unit normal 
vector field N and using the notion of totally geodesic, we have

0 = g(φY,Z) − g(Y,AN)g(Aξ,Z) − g(Y,Aξ)g(JAξ, Z).

Then for any vector fields Y, Z∈Q, where Y, Z are orthogonal to the Reeb vector fields Aξ and AN , we have 
g(φY, Z) = 0, which gives a contradiction.

Next we consider the case for the Reeb function α �=0.
On the distribution Q let us introduce a formula mentioned in section 3 as follows:

2SφSY − α(φS + Sφ)Y = 2φY (6.10)

for any tangent vector field Y on M in Qm (see also [3], pages 1350050-11). So if SY = λY in (6.10), then 
(2λ − α)SφY = (αλ + 2)φY , which gives

SφY = αλ + 2
2λ− α

φY. (6.11)

Here we note that 2λ − α �=0. In fact, if 2λ − α = 0, then αλ + 2 = 0, which implies α2 + 4 = 0. This 
gives us a contradiction. By (6.9) and (6.10), we know that

−2 + α2

α
φSY − αSφY = 2φY.

From this, putting SY = λY and using (6.11), we know that

SφY =−2λ + α2λ + 2α
α2 φY

= αλ + 2
φY.

(6.12)
2λ− α
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Then by a straightforward calculation, we get the following equation

λ{2(α2 + 2)λ + 2α} = 0.

This means λ = 0 or λ = − α
α2+2 . When λ = 0, by (6.12), SφY = − 2

αφY . Then 2
α = α

α2+2 , which gives 
α2 + 4 = 0. This is again a contradiction. So we can assume that the other principal curvature is − α

α2+2 . 
Now let us denote the principal curvature − α

α2+2 by the function β. Accordingly, the shape operator S can 
be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 β · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...
0 0 0 0 · · · β 0 · · · 0
0 0 0 0 · · · 0 β · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us consider the principal curvature β such that SY = βY in the formula (6.9). Then (6.9) gives that 
βφY = −αβSφY . From this, together with the expression for S, we have

SφY =βφY

=− β

αβ
φY = − 1

α
φY.

Then −1 = αβ = − α2

α2+2 , which gives us a contradiction. Accordingly, we also conclude that any real 
hypersurfaces M in Qm with A-isotropic unit normal vector field and the non-vanishing Reeb function α
do not admit a parallel structure Jacobi operator.

Remark 6.1. In [19] we have classified real hypersurfaces M in complex quadric Qm with parallel Ricci 
tensor, according to whether the unit normal N is A-principal or A-isotropic. When N is A-principal, we 
proved a non-existence property for Hopf hypersurfaces in Qm. For a Hopf real hypersurface M in Qm with 
A-isotropic we have given a complete classification that it has three distinct constant principal curvatures.
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